2019-08-05 16:33:31 4212瀏覽
本篇文章扣丁學(xué)堂Python培訓(xùn)小編給小伙伴們分享一下Python實(shí)現(xiàn)二維函數(shù)高次擬合的示例,文中有詳細(xì)的代碼列出供小伙伴們參考,感興趣的小伙伴就隨小編來(lái)看看吧,希望對(duì)大家有所幫助。
# coding=utf-8
import matplotlib.pyplot as plt
import numpy as np
import scipy as sp
import csv
from scipy.stats import norm
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn import linear_model
''''' 數(shù)據(jù)導(dǎo)入 '''
def loadDataSet(fileName):
dataMat = []
labelMat = []
csvfile = file(fileName, 'rb')
reader = csv.reader(csvfile)
b = 0
for line in reader:
if line[50] is '':
b += 1
else:
dataMat.append(float(line[41])/100*20+30)
labelMat.append(float(line[25])*100)
csvfile.close()
print "absence time number: %d" % b
return dataMat,labelMat
xArr,yArr = loadDataSet('data.csv')
x = np.array(xArr)
y = np.array(yArr)
# x = np.arange(0, 1, 0.002)
# y = norm.rvs(0, size=500, scale=0.1)
# y = y + x ** 2
def rmse(y_test, y):
return sp.sqrt(sp.mean((y_test - y) ** 2))
def R2(y_test, y_true):
return 1 - ((y_test - y_true) ** 2).sum() / ((y_true - y_true.mean()) ** 2).sum()
def R22(y_test, y_true):
y_mean = np.array(y_true)
y_mean[:] = y_mean.mean()
return 1 - rmse(y_test, y_true) / rmse(y_mean, y_true)
plt.scatter(x, y, s=5)
#分別進(jìn)行1,2,3,6次擬合
degree = [1, 2,3, 6]
y_test = []
y_test = np.array(y_test)
for d in degree:
#普通
# clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
# ('linear', LinearRegression(fit_intercept=False))])
# clf.fit(x[:, np.newaxis], y)
# 嶺回歸
clf = Pipeline([('poly', PolynomialFeatures(degree=d)),
('linear', linear_model.Ridge())])
clf.fit(x[:, np.newaxis], y)
y_test = clf.predict(x[:, np.newaxis])
print('多項(xiàng)式參數(shù)%s' %clf.named_steps['linear'].coef_)
print('rmse=%.2f, R2=%.2f, R22=%.2f, clf.score=%.2f' %
(rmse(y_test, y),
R2(y_test, y),
R22(y_test, y),
clf.score(x[:, np.newaxis], y)))
plt.plot(x, y_test, linewidth=2)
plt.grid()
plt.legend(['1', '2','3', '6'], loc='upper left')
plt.show()
想要了解更多關(guān)于Python和人工智能方面內(nèi)容的小伙伴,請(qǐng)關(guān)注扣丁學(xué)堂Python培訓(xùn)官網(wǎng)、微信等平臺(tái),扣丁學(xué)堂IT職業(yè)在線學(xué)習(xí)教育平臺(tái)為您提供權(quán)威的Python開發(fā)環(huán)境搭建視頻,Python培訓(xùn)后的前景無(wú)限,行業(yè)薪資和未來(lái)的發(fā)展會(huì)越來(lái)越好的,扣丁學(xué)堂老師精心推出的Python視頻教程定能讓你快速掌握Python從入門到精通開發(fā)實(shí)戰(zhàn)技能??鄱W(xué)堂Python技術(shù)交流群:279521237。
【關(guān)注微信公眾號(hào)獲取更多學(xué)習(xí)資料】 【掃碼進(jìn)入Python全棧開發(fā)免費(fèi)公開課】