2019-07-04 13:44:06 2420瀏覽
今天千鋒扣丁學(xué)堂Python培訓(xùn)老師給大家分享一篇關(guān)于介紹了Python使用sklearn庫實(shí)現(xiàn)的各種分類算法,結(jié)合實(shí)例形式分析了Python使用sklearn庫實(shí)現(xiàn)的KNN、SVM、LR、決策樹、隨機(jī)森林等算法實(shí)現(xiàn)技巧,下面我們一起來看一下吧。
from sklearn.neighbors import KNeighborsClassifier import numpy as np def KNN(X,y,XX):#X,y 分別為訓(xùn)練數(shù)據(jù)集的數(shù)據(jù)和標(biāo)簽,XX為測(cè)試數(shù)據(jù) model = KNeighborsClassifier(n_neighbors=10)#默認(rèn)為5 model.fit(X,y) predicted = model.predict(XX) return predicted
from sklearn.svm import SVC def SVM(X,y,XX): model = SVC(c=5.0) model.fit(X,y) predicted = model.predict(XX) return predicted
def svm_cross_validation(train_x, train_y): from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC model = SVC(kernel='rbf', probability=True) param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]} grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1) grid_search.fit(train_x, train_y) best_parameters = grid_search.best_estimator_.get_params() for para, val in list(best_parameters.items()): print(para, val) model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True) model.fit(train_x, train_y) return model
from sklearn.linear_model import LogisticRegression def LR(X,y,XX): model = LogisticRegression() model.fit(X,y) predicted = model.predict(XX) return predicted
from sklearn.tree import DecisionTreeClassifier def CTRA(X,y,XX): model = DecisionTreeClassifier() model.fit(X,y) predicted = model.predict(XX) return predicted
from sklearn.ensemble import RandomForestClassifier def CTRA(X,y,XX): model = RandomForestClassifier() model.fit(X,y) predicted = model.predict(XX) return predicted
from sklearn.ensemble import GradientBoostingClassifier def CTRA(X,y,XX): model = GradientBoostingClassifier() model.fit(X,y) predicted = model.predict(XX) return predicted
from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import MultinomialNB from sklearn.naive_bayes import BernoulliNB def GNB(X,y,XX): model =GaussianNB() model.fit(X,y) predicted = model.predict(XX) return predicted def MNB(X,y,XX): model = MultinomialNB() model.fit(X,y) predicted = model.predict(XX return predicted def BNB(X,y,XX): model = BernoulliNB() model.fit(X,y) predicted = model.predict(XX return predicted
【關(guān)注微信公眾號(hào)獲取更多學(xué)習(xí)資料】 【掃碼進(jìn)入Python全棧開發(fā)免費(fèi)公開課】
查看更多關(guān)于"Python開發(fā)資訊"的相關(guān)文章>