2018-10-27 15:37:05 1570瀏覽
對大數(shù)據(jù)分析感興趣的小伙伴們是否了解數(shù)據(jù)分析中常用的降維方法都有哪些呢?本篇文章扣丁學(xué)堂大數(shù)據(jù)培訓(xùn)小編和大家分享一下數(shù)據(jù)分析領(lǐng)域中最為人稱道的七種降維方法,對大數(shù)據(jù)開發(fā)技術(shù)感興趣的小伙伴或者是想要參加大數(shù)據(jù)培訓(xùn)進(jìn)入大數(shù)據(jù)領(lǐng)域的小伙伴就隨小編一起來看一下吧。
近來由于數(shù)據(jù)記錄和屬性規(guī)模的急劇增長,大數(shù)據(jù)處理平臺和并行數(shù)據(jù)分析算法也隨之出現(xiàn)。于此同時(shí),這也推動(dòng)了數(shù)據(jù)降維處理的應(yīng)用。實(shí)際上,數(shù)據(jù)量有時(shí)過猶不及。有時(shí)在數(shù)據(jù)分析應(yīng)用中大量的數(shù)據(jù)反而會(huì)產(chǎn)生更壞的性能。
我們今天以2009 KDD Challenge 大數(shù)據(jù)集來預(yù)測客戶流失量為例來探討一下,大多數(shù)數(shù)據(jù)挖掘算法都直接對數(shù)據(jù)逐列處理,在數(shù)據(jù)數(shù)目一大時(shí),導(dǎo)致算法越來越慢。因此,下面我們一下來了解一下數(shù)據(jù)分析中常用的降維方法。
缺失值比率 (Missing Values Ratio)
該方法的是基于包含太多缺失值的數(shù)據(jù)列包含有用信息的可能性較少。因此,可以將數(shù)據(jù)列缺失值大于某個(gè)閾值的列去掉。閾值越高,降維方法更為積極,即降維越少。
低方差濾波 (Low Variance Filter)
與上個(gè)方法相似,該方法假設(shè)數(shù)據(jù)列變化非常小的列包含的信息量少。因此,所有的數(shù)據(jù)列方差小的列被移除。需要注意的一點(diǎn)是:方差與數(shù)據(jù)范圍相關(guān)的,因此在采用該方法前需要對數(shù)據(jù)做歸一化處理。
高相關(guān)濾波 (High Correlation Filter)
高相關(guān)濾波認(rèn)為當(dāng)兩列數(shù)據(jù)變化趨勢相似時(shí),它們包含的信息也顯示。這樣,使用相似列中的一列就可以滿足機(jī)器學(xué)習(xí)模型。對于數(shù)值列之間的相似性通過計(jì)算相關(guān)系數(shù)來表示,對于名詞類列的相關(guān)系數(shù)可以通過計(jì)算皮爾遜卡方值來表示。相關(guān)系數(shù)大于某個(gè)閾值的兩列只保留一列。同樣要注意的是:相關(guān)系數(shù)對范圍敏感,所以在計(jì)算之前也需要對數(shù)據(jù)進(jìn)行歸一化處理。
隨機(jī)森林/組合樹 (Random Forests)
組合決策樹通常又被成為隨機(jī)森林,它在進(jìn)行特征選擇與構(gòu)建有效的分類器時(shí)非常有用。一種常用的降維方法是對目標(biāo)屬性產(chǎn)生許多巨大的樹,然后根據(jù)對每個(gè)屬性的統(tǒng)計(jì)結(jié)果找到信息量最大的特征子集。例如,我們能夠?qū)σ粋€(gè)非常巨大的數(shù)據(jù)集生成非常層次非常淺的樹,每顆樹只訓(xùn)練一小部分屬性。如果一個(gè)屬性經(jīng)常成為最佳分裂屬性,那么它很有可能是需要保留的信息特征。對隨機(jī)森林?jǐn)?shù)據(jù)屬性的統(tǒng)計(jì)評分會(huì)向我們揭示與其它屬性相比,哪個(gè)屬性才是預(yù)測能力最好的屬性。
主成分分析 (PCA)
主成分分析是一個(gè)統(tǒng)計(jì)過程,該過程通過正交變換將原始的 n 維數(shù)據(jù)集變換到一個(gè)新的被稱做主成分的數(shù)據(jù)集中。變換后的結(jié)果中,第一個(gè)主成分具有最大的方差值,每個(gè)后續(xù)的成分在與前述主成分正交條件限制下與具有最大方差。降維時(shí)僅保存前 m(m < n) 個(gè)主成分即可保持最大的數(shù)據(jù)信息量。需要注意的是主成分變換對正交向量的尺度敏感。數(shù)據(jù)在變換前需要進(jìn)行歸一化處理。同樣也需要注意的是,新的主成分并不是由實(shí)際系統(tǒng)產(chǎn)生的,因此在進(jìn)行 PCA 變換后會(huì)喪失數(shù)據(jù)的解釋性。如果說,數(shù)據(jù)的解釋能力對你的分析來說很重要,那么PCA 對你來說可能就不適用了。
反向特征消除 (Backward Feature Elimination)
在該方法中,所有分類算法先用 n 個(gè)特征進(jìn)行訓(xùn)練。每次降維操作,采用 n-1 個(gè)特征對分類器訓(xùn)練 n 次,得到新的 n 個(gè)分類器。將新分類器中錯(cuò)分率變化最小的分類器所用的 n-1 維特征作為降維后的特征集。不斷的對該過程進(jìn)行迭代,即可得到降維后的結(jié)果。第k 次迭代過程中得到的是 n-k 維特征分類器。通過選擇最大的錯(cuò)誤容忍率,我們可以得到在選擇分類器上達(dá)到指定分類性能最小需要多少個(gè)特征。
前向特征構(gòu)造 (Forward Feature Construction)
前向特征構(gòu)建是反向特征消除的反過程。在前向特征過程中,我們從1 個(gè)特征開始,每次訓(xùn)練添加一個(gè)讓分類器性能提升最大的特征。前向特征構(gòu)造和反向特征消除都十分耗時(shí)。它們通常用于輸入維數(shù)已經(jīng)相對較低的數(shù)據(jù)集。
我們選擇2009 KDD chanllenge 的削數(shù)據(jù)集來對這些降維技術(shù)在降維率、準(zhǔn)確度損失率以及計(jì)算速度方面進(jìn)行比較。當(dāng)然,最后的準(zhǔn)確度與損失率也與選擇的數(shù)據(jù)分析模型有關(guān)。因此,最后的降維率與準(zhǔn)確度的比較是在三種模型中進(jìn)行,這三種模型分別是:決策樹,神經(jīng)網(wǎng)絡(luò)與樸素貝葉斯。
通過運(yùn)行優(yōu)化循環(huán),最佳循環(huán)終止意味著低緯度與高準(zhǔn)確率取決于七大降維方法與最佳分類模型。最后的最佳模型的性能通過采用所有特征進(jìn)行訓(xùn)練模型的基準(zhǔn)準(zhǔn)確度與ROC 曲線下的面積來進(jìn)行比較。
要了解更多關(guān)于大數(shù)據(jù)方面內(nèi)容的小伙伴,請關(guān)注扣丁學(xué)堂大數(shù)據(jù)培訓(xùn)官網(wǎng)、微信等平臺,扣丁學(xué)堂IT職業(yè)在線學(xué)習(xí)教育平臺為您提供權(quán)威的大數(shù)據(jù)視頻教程,大數(shù)據(jù)培訓(xùn)后的前景無限,行業(yè)薪資和未來的發(fā)展會(huì)越來越好的,扣丁學(xué)堂老師精心推出的大數(shù)據(jù)視頻直播課定能讓你快速掌握大數(shù)據(jù)從入門到精通開發(fā)實(shí)戰(zhàn)技能??鄱W(xué)堂大數(shù)據(jù)學(xué)習(xí)群:209080834。
【關(guān)注微信公眾號獲取更多學(xué)習(xí)資料】
查看更多關(guān)于“大數(shù)據(jù)培訓(xùn)資訊”的相關(guān)文章>